230 research outputs found

    COP9 Limits Dendritic Branching via Cullin3-Dependent Degradation of the Actin-Crosslinking BTB-Domain Protein Kelch

    Get PDF
    Components of the COP9 signalosome (CSN), a key member of the conserved 26S proteasome degradation pathway, have been detected to be altered in patients of several debilitating syndromes. These findings suggest that CSN acts in neural circuits, but the exact function of CSN in brain remains unidentified. Previously, using Drosophila peripheral nervous system (PNS) as a model system, we determined that CSN is a critical regulator of dendritic morphogenesis. We found that defects in CSN led to the strikingly contrast phenotype of either reducing or stimulating dendritic branching. In particular, we have reported that CSN stimulates dendritic branching via Cullin1-mediated proteolysis. Here we describe that CSN inhibits dendritic arborization in PNS neurons acting via control of Cullin3 function: loss of Cullin3 causes excessive dendritic branching. We also identified a downstream target for Cullin3-dependent degradation in neurons – the actin-crosslinking BTB-domain protein Kelch. Inappropriate accumulation of Kelch, either due to the impaired Cullin3-dependent turnover, or ectopic expression of Kelch, leads to uncontrolled dendritic branching. These findings indicate that the CSN pathway modulates neuronal network in a multilayer manner, providing the foundation for new insight into the CSN role in human mental retardation disorders and neurodegenerative disease

    Dual Regulation of Dendritic Morphogenesis in Drosophila by the COP9 Signalosome

    Get PDF
    Altered dendritic arborization contributes to numerous physiological processes including synaptic plasticity, behavior, learning and memory, and is one of the most consistent neuropathologic conditions found in a number of mental retardation disorders, schizophrenia, and neurodegenerative disease. COP9 signalosome (CSN), an evolutionarily conserved regulator of the Cullin-based ubiquitin ligases that act in the proteasome pathway, has been found associated with diverse debilitating syndromes, suggesting that CSN may be involved in regulation of dendritic arborization. However, the mechanism of this control, if it exists, is unknown. To address whether the CSN pathway plays a role in dendrites, we used a simple and genetically tractable model, Drosophila larval peripheral nervous system. Our model study identified the COP9 signalosome as the key and multilayer regulator of dendritic arborization. CSN is responsible for shaping the entire dendritic tree through both stimulating and then repressing dendritic branching. We identified that CSN exerts its dualistic function via control of different Cullins. In particular, CSN stimulates dendritic branching through Cullin1, and inhibits it via control of Cullin3 function. We also identified that Cullin1 acts in neurons with the substrate-specific F-box protein Slimb to target the Cubitus interruptus protein for degradation

    Splinkerette PCR for Mapping Transposable Elements in Drosophila

    Get PDF
    Transposable elements (such as the P-element and piggyBac) have been used to introduce thousands of transgenic constructs into the Drosophila genome. These transgenic constructs serve many roles, from assaying gene/cell function, to controlling chromosome arm rearrangement. Knowing the precise genomic insertion site for the transposable element is often desired. This enables identification of genomic enhancer regions trapped by an enhancer trap, identification of the gene mutated by a transposon insertion, or simplifying recombination experiments. The most commonly used transgene mapping method is inverse PCR (iPCR). Although usually effective, limitations with iPCR hinder its ability to isolate flanking genomic DNA in complex genomic loci, such as those that contain natural transposons. Here we report the adaptation of the splinkerette PCR (spPCR) method for the isolation of flanking genomic DNA of any P-element or piggyBac. We report a simple and detailed protocol for spPCR. We use spPCR to 1) map a GAL4 enhancer trap located inside a natural transposon, pinpointing a master regulatory region for olfactory neuron expression in the brain; and 2) map all commonly used centromeric FRT insertion sites. The ease, efficiency, and efficacy of spPCR could make it a favored choice for the mapping of transposable element in Drosophila

    Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer

    Get PDF
    Lysosomal storage is the most common cause of neurodegenerative brain disease in preadulthood. However, the underlying cellular mechanisms that lead to neuronal dysfunction are unknown. Here, we report that loss of Drosophila benchwarmer (bnch), a predicted lysosomal sugar carrier, leads to carbohydrate storage in yolk spheres during oogenesis and results in widespread accumulation of enlarged lysosomal and late endosomal inclusions. At the bnch larval neuromuscular junction, we observe similar inclusions and find defects in synaptic vesicle recycling at the level of endocytosis. In addition, loss of bnch slows endosome-to-lysosome trafficking in larval garland cells. In adult bnch flies, we observe age-dependent synaptic dysfunction and neuronal degeneration. Finally, we find that loss of bnch strongly enhances tau neurotoxicity in a dose-dependent manner. We hypothesize that, in bnch, defective lysosomal carbohydrate efflux leads to endocytic defects with functional consequences in synaptic strength, neuronal viability, and tau neurotoxicity

    Drosophila Models of Tauopathies: What Have We Learned?

    Get PDF
    Aggregates of the microtubule-associated protein Tau are neuropathological hallmark lesions in Alzheimer's disease (AD) and related primary tauopathies. In addition, Tau is genetically implicated in a number of human neurodegenerative disorders including frontotemporal dementia (FTD) and Parkinson's disease (PD). The exact mechanism by which Tau exerts its neurotoxicity is incompletely understood. Here, we give an overview of how studies using the genetic model organism Drosophila over the past decade have contributed to the molecular understanding of Tau neurotoxicity. We compare the different available readouts for Tau neurotoxicity in flies and review the molecular pathways in which Tau has been implicated. Finally, we emphasize that the integration of genome-wide approaches in human or mice with high-throughput genetic validation in Drosophila is a fruitful approach

    SlgA, the homologue of the human schizophrenia associated PRODH gene, acts in clock neurons to regulate <i>Drosophila </i>aggression

    Get PDF
    Mutations in the proline dehydrogenase gene PRODH are linked to behavioral alterations in schizophrenia and as part of DiGeorge and velo-cardio-facial syndromes, but the role of PRODH in their etiology remains unclear. Here, we establish a Drosophila model to study the role of PRODH in behavioral disorders. We determine the distribution of the Drosophila PRODH homolog slgA in the brain and show that knockdown and overexpression of human PRODH and slgA in the lateral neurons ventral (LNv) lead to altered aggressive behavior. SlgA acts in an isoform-specific manner and is regulated by casein kinase II (CkII). Our data suggest that these effects are, at least partially, due to effects on mitochondrial function. We thus show that precise regulation of proline metabolism is essential to drive normal behavior and we identify Drosophila aggression as a model behavior relevant for the study of the mechanisms that are impaired in neuropsychiatric disorders

    Concomitant deficits in working memory and fear extinction are functionally dissociated from reduced anxiety in metabotropic glutamate receptor 7-deficient mice

    Get PDF
    Metabotropic glutamate receptor 7 (mGluR7), a receptor with a distinct brain distribution and a putative role in anxiety, emotional responding, and spatial working memory, could be an interesting therapeutic target for fear and anxiety disorders. mGluR7-deficient (mGluR7 / ) mice showed essentially normal performance in tests for neuromotor and exploratory activity and passive avoidance learning but prominent anxiolytic behavior in two anxiety tests. They showed a delayed learning curve during the acquisition of the hidden-platform water maze, and three interspersed probe trials indicated that mGluR7 / mice were slower to acquire spatial information. Working memory in the water maze task and the radial arm maze was impaired in mGluR7 / mice compared with mGluR7 / . mGluR7 / mice also displayed a higher resistance to extinction of fear-elicited response suppression in a conditioned emotional response protocol. In a non-fear-based water maze protocol, mGluR7 / mice displayed similar delayed extinction. These observed behavioral changes are probably not attributable to changes inAMPAorNMDAreceptor function because expression levels of AMPAand NMDA receptors were unaltered. Extinction of conditioned fear is an active and context-dependent form of inhibitory learning and an experimental model for therapeutic fear reduction. It appears to depend on glutamatergic and higher-level brain functions similar to those involved in spatial working memory but functionally dissociated from those that mediate constitutional responses in anxiety tests

    The Endo-siRNA Pathway Is Essential for Robust Development of the Drosophila Embryo

    Get PDF
    Background: Robustness to natural temperature fluctuations is critical to proper development in embryos and to cellular functions in adult organisms. However, mechanisms and pathways which govern temperature compensation remain largely unknown beyond circadian rhythms. Pathways which ensure robustness against temperature fluctuations may appear to be nonessential under favorable, uniform environmental conditions used in conventional laboratory experiments where there is little variation for which to compensate. The endo-siRNA pathway, which produces small double-stranded RNAs in Drosophila, appears to be nonessential for robust development of the embryo under ambient uniform temperature and to be necessary only for viral defense. Embryos lacking a functional endo-siRNA pathway develop into phenotypically normal adults. However, we hypothesized that small RNAs may regulate the embryo’s response to temperature, as a ribonucleoprotein complex has been previously shown to mediate mammalian cell response to heat shock. Principal Findings: Here, we show that the genes DICER-2 and ARGONAUTE2, which code for integral protein components of the endo-siRNA pathway, are essential for robust development and temperature compensation in the Drosophila embryo when exposed to temperature perturbations. The regulatory functions of DICER-2 and ARGONAUTE2 were uncovered by using microfluidics to expose developing Drosophila embryos to a temperature step, in which each half of the embryo develops at a different temperature through developmental cycle 14. Under this temperature perturbation, dicer-2 or argonaute2 embryos displayed abnormal segmentation. The abnormalities in segmentation are presumably due to the inability of the embryo to compensate for temperature-induced differences in rate of development and to coordinate developmental timing in the anterior and posterior halves. A deregulation of the length of nuclear division cycles 10–14 is also observed in dicer-2 embryos at high temperatures. Conclusions: Results presented herein uncover a novel function of the endo-siRNA pathway in temperature compensation and cell cycle regulation, and we hypothesize that the endo-siRNA pathway may regulate the degradation of maternal cell cycle regulators. Endo-siRNAs may have a more general role buffering against environmental perturbations in other organisms

    Mutations in many genes affect aggressive behavior in Drosophila melanogaster

    Get PDF
    Background Aggressive behavior in animals is important for survival and reproduction. Identifying the underlying genes and environmental contexts that affect aggressive behavior is important for understanding the evolutionary forces that maintain variation for aggressive behavior in natural populations, and to develop therapeutic interventions to modulate extreme levels of aggressive behavior in humans. While the role of neurotransmitters and a few other molecules in mediating and modulating levels of aggression is well established, it is likely that many additional genetic pathways remain undiscovered. Drosophila melanogaster has recently been established as an excellent model organism for studying the genetic basis of aggressive behavior. Here, we present the results of a screen of 170 Drosophila P-element insertional mutations for quantitative differences in aggressive behavior from their co-isogenic control line. Results We identified 59 mutations in 57 genes that affect aggressive behavior, none of which had been previously implicated to affect aggression. Thirty-two of these mutants exhibited increased aggression, while 27 lines were less aggressive than the control. Many of the genes affect the development and function of the nervous system, and are thus plausibly relevant to the execution of complex behaviors. Others affect basic cellular and metabolic processes, or are mutations in computationally predicted genes for which aggressive behavior is the first biological annotation. Most of the mutations had pleiotropic effects on other complex traits. We characterized nine of these mutations in greater detail by assessing transcript levels throughout development, morphological changes in the mushroom bodies, and restoration of control levels of aggression in revertant alleles. All of the P-element insertions affected the tagged genes, and had pleiotropic effects on brain morphology. Conclusion This study reveals that many more genes than previously suspected affect aggressive behavior, and that these genes have widespread pleiotropic effects. Given the conservation of aggressive behavior among different animal species, these are novel candidate genes for future study in other animals, including humans
    corecore